
Tony Wildish!
Dan Udwary

Advanced Git and
Gitlab

-	1	-	

May	30,	2017	

Advanced Gitlab

•  Prerequisites	
•  Branching	and	Tagging	
•  Building	mul<ple	containers	
•  Pushing	images	to	mul1ple	repositories	
•  Using	metadata	in	containers	
•  Deploying	runners	on	NERSC	hosts	
•  Best	prac<ces	&	recommenda<ons	

•  =>	Get	the	code	for	this	tutorial:	
–  Fork	the	tutorial	repository,	then	clone	your	fork	to	your	laptop	
–  h@ps://gitlab.com/TonyWildish/gitlab-advanced/	

-	2	-	

Prerequisites

•  Familiarity	with	git,	docker,	gitlab	
–  Git,	version	2.11	or	higher	
–  Docker,	version	1.12.3	or	higher	
–  An	account	on	gitlab.com	

•  Earlier	tutorials:	
–  h@ps://www.nersc.gov/assets/Uploads/Git+Docker-Tutorial-Dec01-2016.pdf	

•  Do	exercises	4	and	5	
–  h@ps://www.nersc.gov/assets/Uploads/2017-02-06-Gitlab-CI.pdf	

•  Do	the	first	exercise	

-	3	-	

h@ps://gitlab.com/TonyWildish/gitlab-advanced/	

Bonus gitlab tip: Notification emails

-	4	-	

Go	to	your	account	seXngs,	
	
No1fica1ons,	Custom	

Bonus gitlab tip: Notification emails

-	5	-	

Choose	any/all	fields,	
	
can	set	per-project	too	

Branching and tagging

•  Branches	
–  Allow	parallel	development	in	a	single	repository	
–  Create	branches	as	needed,	delete	when	obsolete	
–  Can	merge	branches	if	you	like,	or	keep	forever	

•  Bugfix	branches:	merge,	delete	the	branch	
•  Feature	branches:	keep	forever.	

–  Can	merge	back	&	forth	to	control	divergence	

-	6	-	

Master	

Feature1	

Bugfix1	

“Pro	Git”,	by	
Sco@	Chacon,	
Chapter	3	

Branching and tagging

•  Tags	
–  Sta1c	label,	iden1fies	a	par1cular	commit	
–  Easily	recover	par1cular	version	at	any	1me	in	future	
–  Once	pushed,	tags	shouldn’t	be	deleted	or	moved!	

-	7	-	

Master	

Feature1	

Bugfix1	

Tag1	 Tag2	

Tag3	 Tag4	

Branching and tagging

•  Tags	and	branches	in	gitlab	
–  Can	be	used	to	iden1fy	build	products,	label	images	etc	

•  If	there’s	a	tag,	use	that	
•  If	not,	use	the	branch	name	
•  ‘master’	branch	->	‘latest’	docker	version	(by	conven1on)	

–  Let’s	do	exercise	01!	

-	8	-	

h@ps://gitlab.com/TonyWildish/gitlab-advanced/	

Working with forked repositories

•  How	do	you	keep	a	forked	repository	up	to	date?	
–  Add	the	original	source	as	another	‘remote’	repository	

-	9	-	

>	git	clone	git@bitbucket.org:TWildish/jgi-lapinpy.git	
Cloning	into	'jgi-lapinpy'...	
[…]	
	

>	cd	jgi-lapinpy/	
>	git	remote	add	upstream	git@bitbucket.org:berkeleylab/jgi-lapinpy.git	
>	git	remote	-v	show	
origin		git@bitbucket.org:TWildish/jgi-lapinpy.git	(fetch)	
origin		git@bitbucket.org:TWildish/jgi-lapinpy.git	(push)	
upstream		git@bitbucket.org:berkeleylab/jgi-lapinpy.git	(fetch)	
upstream		git@bitbucket.org:berkeleylab/jgi-lapinpy.git	(push)	
	

>	git	pull	upstream	master	
From	bitbucket.org:berkeleylab/jgi-lapinpy	
	*	branch												master					->	FETCH_HEAD	
Upda1ng	a3f5e1e..03943c8	
Fast-forward	

“Pro	Git”,	by	
Sco@	Chacon,	
Sec1on	2.5	

Working with forked repositories

•  How	do	you	keep	a	forked	repo	up	to	date?	
–  Add	the	original	source	as	another	‘remote’	repository	

-	10	-	

>	git	clone	git@bitbucket.org:TWildish/jgi-lapinpy.git	
Cloning	into	'jgi-lapinpy'...	
[…]	
	

>	cd	jgi-lapinpy/	
>	git	remote	add	upstream	git@bitbucket.org:berkeleylab/jgi-lapinpy.git	
>	git	remote	-v	show	
origin		git@bitbucket.org:TWildish/jgi-lapinpy.git	(fetch)	
origin		git@bitbucket.org:TWildish/jgi-lapinpy.git	(push)	
upstream		git@bitbucket.org:berkeleylab/jgi-lapinpy.git	(fetch)	
upstream		git@bitbucket.org:berkeleylab/jgi-lapinpy.git	(push)	
	

>	git	pull	upstream	master	
From	bitbucket.org:berkeleylab/jgi-lapinpy	
	*	branch												master					->	FETCH_HEAD	
Upda1ng	a3f5e1e..03943c8	
Fast-forward	

“Pro	Git”,	by	
Sco@	Chacon,	
Sec1on	2.5	

Building multiple containers

•  Suppose	you	have	a	par<cular	package	with:	
–  A	few	core	dependencies,	very	small	total	
–  Several	op1onal	extras	that	add	hundreds	of	MB	

•  How	do	you	build	an	op<mal	container?	
–  Include	everything	->	baggage	that	not	all	users	need	
–  Leave	stuff	out	->	don’t	sa1sfy	all	users	

•  Solu<on:	
–  Build	two	containers	(or	more)	in	the	same	repository	

-	11	-	

h@ps://gitlab.com/TonyWildish/gitlab-advanced/	

Building multiple containers

•  Gitlab	supports	building	Docker	images	with	names	
other	than	the	repository	name	
–  Default	Docker	name	structure	

•  $REGISTRY_USER/$APPLICATION:$RELEASE_TAG	
–  Extended	syntax:	

•  $REGISTRY_USER/$APPLICATION/real-name:$RELEASE_TAG	

–  Use	extended	syntax	repeatedly	in	.gitlab-ci.yml,	with	
different	‘real-name’s	

–  “myapp-lite”	&	“myapp”,	or	“myapp”	&	“myapp-full”	

–  See	exercise	02!	

-	12	-	

h@ps://gitlab.com/TonyWildish/gitlab-advanced/	

Pushing images to multiple repositories

-	13	-	

GITLAB	and	SHIFTER	
variables	point	to	

different	registry	hosts	

h@ps://gitlab.com/TonyWildish/gitlab-advanced/	

Pushing images to multiple repositories

-	14	-	

Build	and	push	
to	GITLAB	

Re-tag,	push	to	
SHIFTER	

h@ps://gitlab.com/TonyWildish/gitlab-advanced/	

Pushing images to multiple repositories

•  Caveat:	Security!	
–  Gitlab	hands	you	a	login-token	for	every	build	
–  For	shiser,	once	you’re	inside	the	firewall,	there’s	no	
authen1ca1on	needed,	so	no	token	

–  Anywhere	else,	you	probably	need	a	token	or	password,	
but	where	do	you	store	it?	
•  Can’t	be	in	the	repository,	is	too	visible	
•  Has	to	be	in	the	runner	run1me	environment	somehow	
•  Can	do	this	in	SPIN,	though	not	very	securely	at	the	moment	
•  Can	do	it	on	your	laptops	
•  Want	to	do	it	elsewhere?	come	for	a	chat	

–  Exercise	03,	in	your	own	1me	J	

-	15	-	

h@ps://gitlab.com/TonyWildish/gitlab-advanced/	

Using metadata in containers

•  Pass	informa<on	from	the	build	environment	
–  To	the	image,	or	to	the	user	at	run1me	

•  Tell	the	user	anything	they	might	want	to	know:	
– What	run1me	environment	the	sosware	needs	
– What	level	of	tes1ng,	cer1fica1on	has	been	performed	
–  Pointers	to	documenta1on,	source	code,	maintainers…	
–  Run1me	details:	

•  where	the	container	looks	for	input	
•  where	it	expects	to	be	able	to	put	output…	

-	16	-	

h@p://docs.master.dockerproject.org/v1.5/userguide/labels-custom-metadata/	
h@ps://speakerdeck.com/garethr/shipping-manifests-bill-of-lading-and-docker-metadata-and-container	

Thanks	Michael,	Alex	

Using metadata in containers

-	17	-	

Development	environment	

Build	context	(docker	daemon)	
(ARG	XYZ=$XYZ)	

Docker	image	
(LABEL	XYZ=$XYZ)	

Run1me	environment	(container)	
(ENV	XYZ=$XYZ)	

docker	inspect	…	|	grep	XYZ	

docker	run…	echo	$XYZ	

docker	build	…	--build-args	XYZ=123	

How	metadata	goes	from	the	build	
environment	to	the	image,	and	to	
the	running	container	
	

See	Dockerfile.metadata	in	the	repo	

h@ps://gitlab.com/TonyWildish/gitlab-advanced/	

Using metadata in containers

•  How	can	we	use	metadata?	
–  E.g.	defining	a	proper	ontology	
–  Automa1ng	pipelines,	tes1ng,	discovery…	

•  Working	group(?)	to	inves<gate	this	
–  Probably	later	in	the	year	aser	the	migra1on	
–  Volunteers/sugges1ons	gratefully	accepted!	

–  Exercise	04!	

-	18	-	

h@ps://gitlab.com/TonyWildish/gitlab-advanced/	

Deploying runners on NERSC hosts

•  A	runner	at	NERSC	with	write-access	to	$HOME	etc?		
•  You	can	do	this,	but	there	are	serious	risks	involved!	

–  Don’t	share	the	runner	registra1on	token	with	anyone	
•  ~=	giving	them	your	NERSC	password	

–  Don’t	give	other	users	master-level	access	to	your	repository	
–  Consider	alterna1ves:	

•  Use	a	Docker	image,	with	your	custom	build	environment,	on	SPIN	
•  Use	a	VM	somewhere…	

–  Talk	to	a	consultant	before	a@emp1ng	this!	

–  Some	of	these	risks	are	gitlab-specific	
–  Some	are	inherent	in	running	any	internet-enabled	services	

-	19	-	

h@ps://gitlab.com/TonyWildish/gitlab-advanced/	

Deploying runners on NERSC hosts

•  Basic	recipe	
–  Download	the	binary	for	a	gitlab	runner	
–  Register	it,	give	it	a	host-specific	config	file	
–  Give	it	specific	tags	when	registering,	to	iden1fy	it	
–  Use	those	tags	in	your	.gitlab-ci.yml	file	
–  Your	pipeline	can	roam	over	the	en1re	filesystem	if	you	
want,	but	it’s	up	to	you	then	to	ensure	the	directories	you	
use	are	clean	

–  See	exercise	05	for	details	–	we	won’t	do	this	today!	

-	20	-	

h@ps://gitlab.com/TonyWildish/gitlab-advanced/	

Other gitlab features

•  API,	programmable	interface	to	Gitlab	

–  h@ps://docs.gitlab.com/ee/api/	
•  See	JGI/gitlab-cli-tools	repo	for	some	basic	tools,	contribu1ons	welcome!	

•  Build	hooks	
–  Trigger	ac1ons	on	external	services	other	than	gitlab	

•  Similar	capabili1es	on	github,	bitbucket	
–  Trigger	ac1ons	in	gitlab	from	external	service	

•  E.g.	nightly	build,	regardless	of	commits	

•  Mirroring	repositories	
–  Master	repository	in	bitbucket/github?	
–  Can	mirror	to	gitlab,	automa1cally,	transparently	

•  Issue-tracking,	wiki…	
–  Other	goodies	come	for	free	with	gitlab,	as	with	other	hos1ng	services	

-	21	-	

Best practices, recommendations

•  Git:	
–  Use	the	fork/pull-request	model	instead	of	gran1ng	
people	direct-commit	access	to	your	repository	

–  Use	branches	to	experiment,	try	out	bugfixes	etc	
•  Merge	long-lived	branches	frequently	to	control	divergence	

–  Use	tags	to	iden1fy	stable	versions,	releases	etc	

–  Don’t	delete	or	move	tags	once	they’re	pushed	to	the	
master	repository	

-	22	-	

h@ps://gitlab.com/TonyWildish/gitlab-advanced/	

Best practices, recommendations

•  Gitlab:	
–  Build	mul1ple	Docker	images	if	you	have	different	use-
cases	to	serve	from	the	same	code-base	

–  Pushing	to	mul1ple	registries	lets	users	access	your	images	
from	many	places,	easily	

–  Use	metadata	in	your	containers!	
•  Help	us	establish	standards	for	JGI	container	metadata	

–  Control	access	to	your	repositories	
•  Don’t	give	out	the	runner-registra1on	token	
•  Avoid	giving	others	admin/developer-access	to	the	project	
•  Think	twice	before	deploying	runners	on	NERSC	resources	

-	23	-	

h@ps://gitlab.com/TonyWildish/gitlab-advanced/	

Finally…

•  You’re	all	experts	now,	so	update	your	resumes!	

–  “experience	building	and	op1mizing	Docker	images	for	
bioinforma1c	sosware”	

–  “experience	configuring	and	using	con1nuous-integra1on	
pla~orms,	such	as	gitlab,	to	automate	building	and	deploying	
sosware”	

–  “in-depth	understanding	of	best-prac1ces	for	sosware	
management,	such	as	version	control	with	git	and	use	of	
metadata	to	describe	Docker	images”	

–  “understanding	of	git	workflow	models	for	teams,	including	the	
use	of	branches,	tags,	and	developer	access-control”	

-	24	-	

h@ps://gitlab.com/TonyWildish/gitlab-advanced/	

National Energy Research Scientific Computing Center

-	25	-	

